Attack

Factorization Attack

to RSA

Daniel Lerch Hostalot

Difficulty
X X

with over 100 decimal digits.

ings of RSA and the possibility of running

factorization attacks. We will see how RSA
keys and the attack procedure are used to ob-
tain the private key out of the public key.

To follow this article and understand it, the
reader needs to have a basic knowledge of
C programming as well as some mathematical
background. In the On the Net frame you will
find additional material that will allow you to go
further.

All the examples have been developed and
tested on a GNU/Linux system.

I n this article, we will study the inner work-

Public key cryptography

On the contrary to private key cryptography,
where a single key is used to encrypt and
decrypt messages, public key cryptography
uses two keys. These two keys are known as
a public key and a private one. To cypher the
communication, the user needs both of them.
While the private key must remain secret, the
public one can be available to anyone who
wants to send cyphered messages to the
user. A message cyphered with a public key
can only be deciphered with its corresponding
private key. To make this possible, we have

hakin9 3/2007

www.en.hakin9.org

g RSA is, without any doubts, the most popular public key
criptosystem which is being used and which has survived the
analysis of the cripto-analysts for over a quarter of a century.
This popular algorithm bases its security on the difficulty which
is to factorize big numbers, considering as big numbers as those

to go through some mathematics problems.
What we use RSA for is the factorization of the
big numbers.

The beginning of the public key cryp-
tography is connected with the publication
by Diffie and Hellman from the year 1976.
It introdced a protocol that allowed the ex-
change of certain information over an unsafe
channel. Soon afterwards, in 1977, Rivest,
Shamir and Adleman proposed the criptosys-
tem RSA, the most widely-used criptosystem
nowadays.

In 1997 appeared the documents proving
that the cryptographers from the British Gov-
ernment Group for the Security of Electronic
Communications (GSEC) had already known
about this kind of cryptography in 1973.

p
What you will learn...

¢ how RSA works
* how to run factorization attacks

What you should know...

« basic knowledge of C programming
-

Factorization attack to RSA

Mathematical concepts

Divisor or Factor:
Aninteger a is a divisor (or factor) of b when there is other integer ¢ that complies with
b=a-c. Example: 21=7-3

Prime numbers and composed numbers:

Aninteger is prime if it can only be divided by one and by itself. An integer is composed
if it's not a prime.

Example: 21=7-3 is a composed number, 7 and 3 are prime numbers.

Factorization:

Factorization of an integer n is the process of decomposing it on its prime factors:
n= pf' -pf --p¢ where p, are prime numbers and ¢, are positive integers.

Example: 84 is factorized as 21=2%.3.7.

Module:
We know as module and we represent it as amodb the rest of the entire division of a
between b. Example:5mod3=2, 10mod7=3, 983mod3=2, 1400mod2=0 .

aand b are module of n: b=a(modn) if their difference (a-b) is a multiple of n.

Maximum Common Divisor:

We call maximum common division of two integers a and b, represented as med (a,b)
, the bigger integer that can divide a and b.

Example: med(42,35) = med(2-3-7,5-7) = 7Euclidean Algorithm:

The Euclidean Algorithm calculates the maximum common divisor of two numbers
based on mcd(a,b)=med(b,r), where a>b>0 are integers and r rest of the division

between a and b
Example: mcd(1470,42)

(1) 1470 mod 42 = 35 — med (1470,42) = med (42,35)

(2)42mod35 =7 — med(42,35) = med(35,7)

(8)35mod 7 =0 — med(7,0) = 7 Euler Indicator (Totient):

Given n>0 we know as ®(n) the number of integers in the interval [L,n] that are
prime* with n. For n=p-q, ®(n)=(p-1)(q-1).

*Two integers a and b are prime between themselves (or co-prime) if med(a,b)=1.

J

The RSA criptosystem
As we have said before, the security
of RSA lies on the computational diffi-
culty that represents the factorization
of big numbers. Factorizing a number
is to find the prime numbers (factors)
that multiplied result on that number.
If we want, for example, to factorize
the number 12, we will obtain as a re-
sult 2:2-3. The simple way to find the
factors of an n number is to divide it
by all the prime numbers smaller
than n. This procedure, although
simple, is extremely slow if we want
to factorize big numbers.

Let's make some calculations to
get the idea. A 256 bits key (as the
one we will break later) has around
78 decimal digits (1078). As on the
RSA keys this number usually has
only two prime factors, each of them
will have more or less 39 digits. This
means that to factorize the number we

will have to divide it by all the prime
numbers of 39 digits or less (1039).
Supposing that only 0.1% of the num-
bers are prime numbers, we will have
to make around 1036 divisions. Let's
imagine we have a system capable of
making 1020 divisions per second. In
this case, we will spend 1016 seconds
on breaking the key. In other words,
more than 300 million years, a million
times the age of the universe. Luckily,
we will spend a little bit less.

Let's see how RSA works. We will
begin by generating the public and
the private keys (in the table on the
side we have some interesting math-
ematical concepts shown). For this
purpose it is necessary to proceed
the following steps.

Step 1
We randomly choose two prime
numbers p and g, and we multiply

www.en.hakin9.org

them, obtaining n: n=p-q. If we
choose, for example, that p=3 and
q=11 we obtain n=33.

Step 2

We calculate the Euler (Totient) in-
dicator with the following formula:
®(n)=®(p-q)=(p-1)-(q-1). In this
example we will get @(n)=20.

Step 3

We find a cypher exponent (later we
will use it to cypher) and we call it e.
This number must be compatible to
med(e,®(n))=1A good example could
be: e=3 as it doesn't have any com-
mon factor with 20 (factors 2 and 5).

Step 4

We calculate a de-cypher exponent
and we call it d (later we will use
it for de-cyphering). This number
must tally with 1<d<®(n) so that
e-d=1(mod@(n)). This means that d
will be a number between 1 and 20
which multiplied by 3 and divided by
20 will be 1. d, can be 7 then.

The keys

The user's public key belongs to the
couple (n,e), in our example (33, 3),
and the private key is d, so it's 7.
Logically, the numbers p, q and
should remain secret.

(De)cyphering

At this point, we only need to cypher
with c=M*modn and decipher with
M=C'modn. If we consider that our
message is M =5, the corresponding
cyphering will be =5 mod33=26-

To de-cypher we would only have
to apply M =26"mod33=5-

As we said in the beginning and as
we can see from the previous proce-
dure, the security of the criptosystem
resides in n. This means that if an at-
tacker who can access the public key
manages to factorize n obtaining p
and q, he only has to use the previous
formulas to obtain the private key.

The RSA

factoring challenge

The RSA Factoring Challenge is
a contest financed by RSA Labo-
ratories in which great prices are

hakin9 3/2007

>><(Attack

awarded to those who can factorize
certain very large numbers. What al-
lows them to know the state of the art
of the factorization systems is being
aware which key length is necessary
to keep RSA safe.

While we write this article, the
factorization record is RSA-640, a
193-digit number that was factorized
on the 2nd of November 2005 by
F. Bahr et al. The next challenge is
RSA-704, with a 30.000$ award.

Without a doubt, The RSA Fac-
toring Challenge is a great way to
know the actual situation of the fac-
torization systems.

You can see the current chal-
lenges in a table situated at the end
of this article.

Factorization attack

In the following lines, we will make
an example attack to an RSA key.
To make the calculations faster we
will use a key much shorter than
normal, simplifying its factorization.
Even if it's not a real example, it will
be good to know how a complete at-
tack is made.

First of all, we will create a work
environment with OpenSSL, gen-
erating the necessary keys and cy-
phering a message that we will use
as an objective for our attack. Later
we'll factorize the n module and ob-
tain the private key, finally decipher-
ing the message.

OpenSSL and RSA
OpenSSL is a very useful open
source cryptographic tool. In the
reference section you will find where
to download it, but most of the GNU/
Linux distributions include it by de-
fault. In this section we will use it to
configure a test environment in which
we will run the attack.

The first step is to generate a cou-
ple of keys to cypher and decipher.
We will generate 256-bits keys, too
short to keep our communications
safe, but enough for our exercise.

We generate a pair of keys, keep-
ing our private key secret.

Generate a pair of RSA 256-bit

keys

hakin9 3/2007

openssl genrsa -out rsa_privkey
.pem 256

cat rsa_privkey.pem

MIGQAQEARIEA26dbqzGRt31gincXxy
43jZMMOId/DVT8aTcq8aam
DiMCAWEAAQTh

AmvTloXa/rxF3mrVLrR/RSTVKIWT
sQ5CW1/+37wztZOpAhEA+4jg
EkfalFH+0S5+1

IPKDSwIRAN+NmMH4AF0B8jz
MAXHHXGUCEGRpRZnGmV
kwS1rTgqj+Zu0CEA7vTICQR

yRxt09zCGNgcYoOCEDEW mvoz
MYYLCS50+2zgfV4U=

Following this step, we save the pub-
lic key in a file. This is the key we will
publish to allow anyone to send us
cyphered messages.

Saving the public key on a file
openssl rsa -in rsa_privkey.pem
-pubout -out rsa_pubkey.pem

cat rsa_pubkey.pem

MdwwDQYJKoZIhvcNAQEBB
QADKwAWKAThANunW6sxkbd
9a0p3F8cul42TDDiHEwlU

/Gk3KvGmpg4 jAgMBAAE=

After generating this pair of keys, we
can cypher and decipher. We will
work with the following message:

echo "Forty-two" > plain.txt

This message could be easily cy-
phered by the use of the following
command and the public key:

openssl rsautl -encrypt
-pubin -inkey rsa_pubkey.pem \

-in plain.txt -out cipher.txt

To de-cypher we will use the private
key:

openssl rsautl -decrypt -inkey

rsa_privkey.pem -in cipher.txt

Once we have seen how to use
OpenSSL with RSA and knowing the
need to have the private key to deci-
pher the messages, our objective is to

www.en.hakin9.org

obtain this private key without access-
ing the original. In other words, how to
obtain the private key using the public
key. The first thing we need to do this is
to obtain the n module and the cypher
exponent. This can be done with the
following command and the public key:

openssl rsa -in rsa_pubkey.pem
-pubin -text -modulus
Modulus (256 bit):
00:db:a7:5b:ab:31:91:b7:7d:
6a:8a:77:17:c7:2e:
23:8d:93:0c:38:87:7£:0d:54:
fc:69:37:2a:f1:a6:
a6:0e:23
65537 (0x10001)
Modulus=DBA75BAB3191B77D

Exponent:

6A8AT7717C72E238D930C38877
FOD54FC69372AF1A6A60E23

writing RSA key

MdwwDQYJKoZIhvcNAQEBBQ
ADKwAWKAThANunW6sxkbd9
aop3F8cul42TDDiHfwlU

/Gk3KvGmpg4 jAgMBAAE=

The module is represented in hexa-
decimal. In order to convert it to deci-
mal you can use the program shown
in Listing 1.

gcc hex2dec.c -1ssl

./a.out DBA75BAB3191B77D6

Listing 1. Transform
Hexadecimal to Decimal

#include <stdio.h>

#include <openssl/bn.h>

int main (int argc, char **argv)
BIGNUM *n BN _new () ;

if (argc!=2)

printf ("%s <hex>\n",
argv[0]);
return 0;

}
}

if (!BN_hex2bn(&n, argv[l]))
printf ("error:
BN_hex2bn()");
return 0;

printf("$s\n", BN_bn2dec(n));
BN_free(n);

Factorization attack to RSA

A8A7717C72E238D930C388 e
77F0DSAFC69372AFLAGAGOE3 Listing 2. A private key

99352209973842013949736850170 #include <stdio.h>

185769998267119089063339396
575567287426977500707

#include <openssl/bn.h>
#include <openssl/rsa.h>
#include <openssl/engine.h>

Once obtained the module in deci- #include <openssl/pem.h>

mal, the next step is to factorize it.

int main (int argc, char **argv)

RSA *keypair = RSA new();
BN_CTX *ctx = BN_CTX new();
BN_CTX_start (ctx);
BIGNUM *n = BN_new(
BIGNUM *d = BN_new (
BIGNUM *e = BN_new (
BIGNUM *p = BN_new (
BIGNUM *g = BN_new();
BIGNUM *dmpl = BN new();
BIGNUM *dmgl = BN_new();
BIGNUM *igmp = BN_new
BIGNUM *r0 = BN CTX get

Factorization

of the n module

As the number we are factorizing
is not too great, it's faster to apply
the QS factorization algorithm. This
algorithm is implemented by msieve,
a program that you can download
looking at the reference table.
Msieve has enough documentation

0
(

(ctx);
to install and use it, which is not at BIGNUM *rl - BN CTX get (ctx);
all complicated. It's enough with the BIGNUM *r2 = BN_CTX_get (ctx);
following command to factorize the BIGNUM *r3 = BN_CTX_get(ctx);

proposed number: if (arge!=1)

printf ("%s [p] [q] [exp]\n", argv([0]);

/msieve -v

9935220997384201394973685
01701857699982671190890633
39396575567287426977500707

return 0;

BN_dec2bn (¢p, argv[l]);
BN_dec2bn (&q, argv(2]);
BN_dec2bn (&e, argv[3]);
. if (BN_cmp (p, q)<0)

A modern computer can factorize
this number in around ten minutes, BIGNUM *tmp = p;
depending on the hardware. The p=a

result follows: R

BN_mul(n, p, g, ctx);

// We calculate d

BN _sub(rl, p, BN_value one()); // p-1
BN_sub(r2, g, BN_value one()); // g-1/

BN mul(r0, rl, r2, ctx); // (p-1)(q-1)
BN_mod_inverse(d, e, r0, ctx); // d

// We calculate d mod (p-1)

BN_mod (dmpl, d, rl, ctx);

factor: 297153055211137492311
771648517932014693

factor: 334346924022870445836
047493827484877799

At this point, once factorized the n

module and with the cypher expo-
nent 65537 obtained with the previ-
ous step, we have all the necessary
data to obtain the private key.

Obtaining the private
key and de-cyphering
the message

Because of the difficulties of this
process when using common tools,
we will develop a program that can
do it for us. You will find the sources
in Listing 3.

To do the calculations we have
used the OpenSSL library. The
BIGNUM variables are used by this
library to work with big numbers.
These have their own API to make

// We calculate
BN_mod (dmgl, d,
// We calculate

BN_mod_inverse (igmp, q, p, ctx);

// RSA keys

keypair->n = n;
keypair->d = d;
keypair->e = e;
keypair->p = p;
keypair->q = q;
keypair->dmgl =
keypair->dmpl =
keypair->igmp =

PEM write RSAPrivateKey (stdout, keypair,
NULL, NULL, 0, NULL, NULL);

BN_CTX_end (ctx);

BN_CTX_free(ctx);

RSA_free (keypair);

return 0;

d mod (g-1)
r2, ctx);

the reverse of g mod p

dmql;
dmpl;
iqmp;

www.en.hakin9.org

hakin9 3/2007

>><(Attack

operations such as addition, subtrac-
tion, modular operations, etc.

The example program begins
putting in BIGNUM variables the pa-
rameters p, q and e. Following this,
if you look at the code in detail and
with help of the commentaries, you
can see the procedure of generating
the private key. The same procedure

we previously explained in theory. In
fact, the only difference between the
test and real generation of the key
lies in the fact that p and q would
be randomly chosen. In our case
we obtained them from the factoriza-
tion of the module. Finally, helped
by PEM_write_ RSAPrivateKey() we
write the private key used in the

~

Listing 3. Changing a private key into a public key

gcc get_priv_key.c -lssl -o get_priv key
./get_priv_key 297153055211137492311771648517932014693 \
334346924022870445836047493827484877799 65537

MIGQAGEARIEA26dbqzGRt31gincXxy4§jZMMOId/DVT8aTcq8aamDiMCAWEARQTh
AMvTloXa/rxF3mrVLrR/RSTvKIWTsQ5CW1 /+37wztZOpAhEA+4jgEkfalFH+0S+1
IPKDSwIRAN+NmMH4AFOB8J zMAXHHXGUCEGRPRZNGMVkwS1rTgqj+Zu0CEATvICQR
yRxt09zCGNgcYoOCEDEW7mvozMYYLC50+2zgfV4U=

Listing 4. dfact_client

for(;;)
{
get_random seeds (&seedl, &seed?2);

switch (status

case DF_CLIENT_STATUS_WAITING:
N = recv_N_number (&¢rel_by host, host);
if (IN)
sleep (DF_TIME TO RECV);
else
status = DF_CLIENT STATUS_ RUNNING;
break;
case DF_CLIENT_ STATUS_RUNNING:

msieve_obj *obj = NULL;
obj = msieve_obj_new (N, flags, relations, NULL,
NULL, seedl, seed2, rel by host, 0, 0);
if (obj NULL)
syslog (LOG_ERR, "Factoring initialization failed");
free (N);
return 0;
msieve_run(obj);
if (obj) msieve obj free (obj);
while(!send_relations (N, host, relations))
sleep (DF_TIME TO SEND);
if (unlink(relations)==-1)
syslog (LOG_ERR, "unlink(): %s: %s",
strerror (errno));
status = DF_CLIENT_STATUS_WAITING;
free(N);

relations,

break;
default:

break;

hakin9 3/2007 www.en.hakin9.org

examples in PEM format. If we
compare the generated key with the
original private key we can see that
we have achieved our objective, as
we have made it to the private key
from the public key.

If we keep our new private key on
a text file, for example rsa_hacked__
privkey.pem, we can decipher the
message:

openssl rsautl -decrypt
-inkey rsa_hacked privkey

.pem -in cipher.txt

Modern factorization
algorithms

Factorization algorithms have im-
proved much in time, so that today
we have such fast algorithms as the
Elliptic Curve Method (ECM), the
Quadratic Sieve (QS) or the Number
Field Sieve (NFS). From this algo-
rithms come also certain variations
dependent on the type of number that
we have to factorize or on the way to
resolve certain parts of it. These algo-
rithms are rather complex. They are
normally divided into steps in which
different calculations leading to factor-
izing the number are made. QS and
NFS have a sieve step. At this stage
some kind of relations are gathered,
which finally construct a system of
equations to obtain the result. The
sieve step can be done by several
machines working simultaneously, as
it's normally the longest stage.

In the examples we have used
the msieve program, an implementa-
tion of the Multiple Polynomial Quad-
ratic Sieve (MPQS), a variation of
QS. The QA algorithm is faster when
you have to factorize numbers of
less than 110 digits. But when we go
beyond this limit, NFS should be ap-
plied. A variation of NFS used to fac-
torize any type of number is GNFS or
General Number Field Sieve. There
is not much free software that imple-
ments GNFS, and the one that exists
neither has a good documentation
available nor is easy to use. At least,
that is the case when we are writing
this article. Anyway, we will see how
GGNFS works. It is an implementa-
tion of GNFS that although not being

Factorization attack to RSA

completely stable, allows us to fac-
torize without too many problems.

GGNFS is composed by a group
of tools, that used one by one, can go
through all the steps that compose
this algorithm. For a newbie, factoriz-
ing a number through this procedure
can be really complicated. That's
why GGNFS includes a perl script
which does all the job. The script al-
lows us to use the program flawlessly
however it's really not the best way of
getting the most out of the tools that
compose GGNFS.

The simplest way to try this pro-
gram is to edit a file, that we can call
test.n indicating the number that we
want to factorize.

cat test.n

n: 1522605027922533360535
6183781326374297180681149
6138068865790849458012296
3258952897654000350692006139

Later we run:
tests/factlLat.pl test.n

And this will factorize the number.
Well, after some hours. The time de-
pends on the hardware used. To make
the most out of GGNFS it's necessary
to forget about the script factLat.pl and
to use the tools it has with the correct
parameters. As GGNFS usage can
take a whole article, I'm not going to
explain it here. The best way to learn
how to use it is to read the documenta-
tion available with the source code and
to check the discussion forum (see On
the Net frame). It is also advisable to
read some documents about NFS.
Nevertheless, we have to take into
account the fact that we'll need some
advanced knowledge on linear alge-
bra and number theory.

The need for a
distributed attack

The key factorized on this example
is very small when compared to the
length of the kind of key used nowa-
days. If right now we want to create
an RSA key for our personal use, we
should use a minimum of 1024 bits.
If we want to be safer, we should use

a key of 2048 or 4096 bits. When we
try to factorize one of these keys with
our home PC, no matter how fast it is,
we will see how it stays doing endless
calculations, not going anywhere. The
truth is, we cannot break such a key.
But the advances on computers and
mathematics make the distance to this
objective smaller and smaller every
day. Under certain conditions, we can
do distributed attacks using thousands

of machines simultaneously helping
with the process of factorization. There
are many studies done on this field
analyzing the possibilities of attacking
a 1024 bits key (see the links table). At
this point, this is beyond most people's
reach, but not beyond the reach of cer-
tain governments and organizations.
Also the existence of competitions
such as the previously mentioned
RSA Factoring Challenge helps the

Listing 5. dfact_server
for(;;)

sd_tmp

if ((pid=fork())==0)

close (sd) ;

else if (pid>0)

close (sd_tmp) ;
child count++;

else
perror ("fork()");
close(sd_tmp);

close(sd);

while (child count >= DF_MAX CLIENTS) sleep(l);

socket server accept(sd, client, sizeof(client));

process_client (sd_tmp, N, num_relations, rel by host, client);

for(;;)

int n_sieves

if (n_sieves>=num_relations)

printf ("Factoring %s\n", N);
kill (0, SIGUSR1);

uint32 seedl;

uint32 seed2;

uint32 flags;

printf ("Factoring Done\n");
kill (getppid(), SIGKILL);
exit (0);

sleep (seconds) ;

Listing 6. dfact_server (process_relations)

void process_relations(char *N, int num_relations, int seconds)

get_num_relations_in file (DF_FILE_RELATIONS) ;

printf ("relations: %d, need: %d \n", n_sieves, num relations);

flags |= MSIEVE FLAG USE_LOGFILE;
get _random seeds (&seedl, &seed2);
factor_integer (N,flags,DF_FILE_RELATIONS,NULL, éseedl, &seed2) ;

www.en.hakin9.org

hakin9 3/2007

>><< Attack

experts on this field and gives them
motivation to create distributed tools
for the factorization of big numbers.

Distributed attack

In previous examples we have seen
the software msieve. As we have
learned, it's easy to use and the
program is developed enough not to
create too many problems to the user.
In my opinion, this is the best software
so far which implements the Quad-
ratic Sieve algorithm. But the program
is not more than a demo of the basic
usage of the msieve library, and it can
only be used on a single machine.

On the program's documentation
there are a couple of recipes to use the
demo program with different machines
so that a distributed factorization can
be done. It is, however, a manual and
not very practical procedure. That is
why | have decided to implement a
small example program that introduces
the usage of the msieve library to do
distributed factorization. This program
is called dfact and you can find it on
the CD that comes with this magazine
and on the links section. The program
can be compiled with a make and it
only requires a msieve library correctly
installed. The path of this library has
to be included in the Makefile. Once
compiled we can find two binaries on
the folder bin/ which corresponds to
the client and server sides. The server
(dfs) will be executed on a machine
with enough memory (the bigger the
number, the more memory is needed)
and will be the one to distribute work-
load and coordinate the clients. The
server gets four parameters: The
number to factorize, the number of re-
lations we want the client to recompile
for every packet sent and the number
of seconds for the server to check if it
has enough data from the clients to
finish the factorization successfully. In
the next example we ask the clients to
send the relations every 5000 and the
server to verify the number of relations
every 60 seconds.

bin/dfs 9935220997384201394
973685017018576999826
711908906333939657556
7287426977500707 5000 60

hakin9 3/2007

We will run dmc in a couple of clients,
giving it, as a parameter, the IP of the
server and the path to a temporary
file where the relations can be save.
For example:

bin/dfc /tmp/rel 192.168.1.7

The program dfact has been devel-
oped using the msieve library as its
base. This one has an example pro-
gram called demo.c that shows it's
usage in a simple way. If we observe
the code we can see it's not too diffi-
cult to follow. In Listing 4 we can see
a piece of code of the dfact client.

Here we show the inner works of the
main loop where the client gets the
number to factorize from the server,
then calculates the relations asked
through msieve, and sends them
to the server so that it can process
them. Let's see how the server han-
dles the situation (Listing 5). Every
client asking for sending the list of
relations to the server is managed by
process_client() through a separate
process.

Another separate procedure
takes care of processing the rela-
tions that the clients send in regular
time intervals (see Listing 6).

Ve
The RSA Ractoring Challenge
RSA-704(30.0008%): http.//www.rsasecurity.com/rsalabs/node.asp?id=2093#RSA
704,
» RSA-768 (50.000%): http.//www.rsasecurity.com/rsalabs/node.asp?id=2093#RSA
768,
» RSA-896(75.0009%):http.//www.rsasecurity.com/rsalabs/node.asp ?id=2093#RSA
896,
* RSA-1024 (100.0009%): http.//www.rsasecurity.com/rsalabs/node.asp?id=2093#R
SA1024,
» RSA-1536 (150.0009%): http.//www.rsasecurity.com/rsalabs/node.asp?id=2093#R
SA1536,
» RSA-2048 (200.0009$): http://www.rsasecurity.com/rsalabs/node.asp?id=2093#
RSA2048.
On the Net
Factorization of big integers — http://factorizacion.blogspot.com,
« DFACT - http://daniellerch.com/sources/projects/dfact/dfact-hakin9.tar.gz,
* GGNFS - A Number Field Sieve implementation: http://www.math.ttu.edu/
~cmonico/software/ggnfs/,
* Yahoo! Group for GGNFS — http.//www.groups.yahoo.com/group/ggnfs,
* MSIEVE - Integer Factorization: http://www.boo.net/~jasonp/qs.htmi,
« The RSA Factoring Challenge: http://www.rsasecurity.com/rsalabs/node.asp?id=
2092,
e OpenSSL - http://www.openssl.org,
« The Shor algorithm — http.//es.wikipedia.org/wiki/Algoritmo_de_Shor,
¢ On the cost of factoring RSA 1024 - http://www.wisdom.weizmann.ac.il/
%7Etromer/papers/cbtwirl.pdf,
« Factoring estimates for a 1024 bit RSA modulus — http://www.wisdom.weizmann.a
c.il/%7Etromer/papers/factorest.pdf.
&
Ve
About the author
Daniel Lerch Hostalot, C/C+ Software on GNU/Linux platforms engineer, MA in Wire-
less & Network Security from Cisco Networking Academy Program (CCNA), Technical
Engineer for IT Systems graduated from Oberta University, Catalonia (UOC). Currently
working for telecommunication sector. Knows following programming languages: C/
C++, ShellScript, Java, Perl, PHP (C modules program).
e-mail: dlerch@gmail.com, url: http://daniellerch.com
&

www.en.hakin9.org

The example program can let
us factorize a number using several
machines. Even though it could be
achieved via Internet, the lack of au-
thentication and/or cyphering mech-
anisms makes it not advisable. The
improvement (this could be a good
exercise for the readers by the way)
could be the usage of SSL, strength-
ening of the security, performance
optimizations, etc...

We have mentioned previously
that GNFS is more efficient than
MPQS when factorizing the num-
bers of over 110 digits. At this point,
it seems that there is no open source
software allowing to easily implement
a distributed system of factorization
with GNFS as we have done with
msieve (QS). The author of msieve,
however, is preparing the support for
GNFS. Even he is currently half-way
through this, it is possible that in the
near future it will be available. If this
happens, it wouldn't be very difficult
to modify our example (dfact) to make
distributed factorization with GNFS.

Anyway, GGNFS has the pos-
sibility of using several machines for
factorization purposes. This can be
done through the script factLat.pl,
as shown previously, but it's a very
unstable version and it only allows to
use a few machines on a LAN.

Conclusion

To finish, | want to mention the reper-
cussion that can have mathematical
advances on this field. A number
that today is impossible to factorize
through computation, tomorrow could
be factorized in a few minutes. Every-
thing depends on that if someone has
a revolutionary idea to tackle the prob-
lem. However, the experience of 20
years of working with RSA algorithms
speaks for its security and makes this
possibility quite remote.

Also, the imminent release of
quantum computers will be a serious
threat to the security of this known
criptosystem. This is due to the Shor
algorithm (see On the Net frame) that
shows a way to tackle the problem
with polynomial complexity. This will
allow to factorize a key in a very rea-
sonable time. ®

Linux+DVD

Linux Environment for Experts

Linux+DVD — quarterly directed

to all Linux users, IT specialists and
everyone who is looking for the
alternative for MS Windows.

It covers Linux platform and open
source solutions for both the beginners
and experienced users.

Check it out at Barnes & Noble!

Interview with Greg DeKoenigsh
the Community D!vthpmemhmg!r(n?:l;}:}

vy, OpenSuSE 10.2 gui

Make your own game
Developing physics toys under Linux I I CONSUMERSTEST
Swift, Shared and Secure on Web Hosting Services

Large-scale user authentication with LDAP and k

Quick Steps on How 1o Insta)

Streamripping under Linux
Get your audio and video streams

saved 1o the hard drive
FREE E-BOOKS Bullding Packages with Checkinstall

Fedora Multimedia Installations HOWTO Don't learn the ins and outs of bullding paghage
Getting Started with Fedara Enterthe Fox, part2
Linux Dictionary Mozilla Web Browser everview

ke WUMMEU: Self Exposure Section by Mark Rais,
Svey o Frouect peing Linux community activist
0N THE DVDs EXCLUSIVELY IN LINU

rsion ¢
Fedora Core 6 | Sketsa version
Lefthand CRM | worth ‘:ﬁ%:::"“a'
Movie tutorials Promo o
Nucleus Software | the atestve

www.I[pmagazine.org/en

